Adapting water governance in river basins to climate change: archetypical barriers

Klaus Eisenack & Christoph Oberlack

Humboldt-Universität zu Berlin, klaus.eisenack@hu-berlin.de

Centre for Development and Environment (CDE), Bern

WINS Seminar, June 2016

River basin governance and adaptation

- Governing interdependence and collective action in river catchments for a static climate (e.g. Ostrom 1990, Saleth and Dinar 2008, Paavola 2010, Libecap 2011, Garrick et al. 2013)
 - Upstream-downstream externalities, variability in time, ...
- Climate change affects collective action in river basins
 - Changing frequency and intensity of floods and droughts
 - Modifications of the hydrological cycle
 - ...
- ➤ River basin adaptation research (e.g. Huntjens et al. 2012, Pahl-Wostl and Knieper 2014, Schlager and Heikkila 2011), but not much from a perspective on barriers to adaptation
- ➤ When do institutions (not) change in response to ongoing exogeneous trends?

Barriers to adaptation: state of the art

(Eisenack et al. 2014)

- Conceptualizations (Moser & Ekstrom 2010, Eisenack & Stecker 2012, Biesbroek et al. 2013)
 - A 'barrier to adaptation' is (1) an impediment (2) to specified adaptations (3) for specified actors in their given context that (4) arise from a condition or set of conditions. A barrier can be (5) valued differently by different actors, and (6) can, in principle, be reduced or overcome.
- Many case-specific narratives (e.g. Burch 2010, Inderberg 2011, Jones & Boyd 2011, Krellenberg 2012, Vine 2012, Lehmann et al. 2013, ...)
- Generic typologies (e.g. Adger 2009)
- Descriptive lists of which barriers emerged (e.g. Lorenzoni et al. 2007, Biesbroek et al. 2011)
- "Overcoming barriers": Ad hoc assumptions about how barriers come about
- Open issue
 - ➤ How to compare across cases in order to explain barriers?

Explaining barriers to adaptation

- Identifying repeated institutional patterns that bring about barriers
- Meta-study design with focus on river basins all over the world

Adaptation to climate change

- "Adaptation" refer to all actions the moderate harm or (exploit benefits) from climate change (typically on the local level)
- Stimuli from climate change affect diverse exposure units (within diverse contexts) in diverse ways, likely requiring different responses
- Ineffectiveness of climate protection requires adaptation to climate change

Methodology

Case study selection

- 1. Peer reviewed, English (1990-Juni 2015)
- 2. Topic (Keywords with synonyms)
 - Climate, adaptation, barriers
 - Rivers, inland waters
 - No other geographical restrictions
- 3. Content
 - Excluded if only: lakes, wetlands, irrigation systems
 - Based on primary data
 - Contains causal statements about barriers
 - Description of collective action issues

Semi-open coding of models

- 1. Identifying causal statements about barriers ("models", n=114)
- Starting with first tier variables of SES framework (Oberlack 2014, based on Ostrom 2007)
- 3. Iterative refinement and development of a code system with higher tier variables
- 4. Inter-rater reliability checks

Formal concept analysis (FCA)

- 1. Objects: 114 models
- 2. Attributes: 141 codes
- 3. Compute re-occurring attributes to identify archetypes
- 4. Select those that occur at least 3 times and in at least 2 papers

N=26

More methodological detail...

Snapshot of 21 identified archetypes

Mech. 1: Coordination gaps (32 models)

	High transaction costs due to scattered responsibilities	13-GS21
1.1	and heterogenous interests about water services	I3-GS21- A22
	and limited horizontal coordination	I3-GS21- GS42
1.2	High transaction costs due to limited horizontal coordination	13-GS42
	with heterogenous interests and upstream- downstream externalities	I3-GS42- A22-RS12
1.3	High transaction costs due to limited vertical coordination	13-GS41
	Insufficient reason due to	I1-GS41
	High transaction costs due to limited trust	13-A25
1.4	and concurrent stimuli	I3-A25- RS5
1.5	Limited control of operator due to limited control in polycentric system	14-GS31

Mech. 4: Uncertainties (21 models)

Л	4.1	Constrained capacity due to limited understanding of SES	I2-A12
7.1		High transaction costs due to	I3-A12
		Stalled social learning due to	I5-A12
		Constrained capacity due to limited understanding of climatic stimulus	I2-A13
4	.2	Insufficient reason due to	I1-A13
	Co-occurrence of limited understanding of SES and of climatic stimulus	A12-A13	

Mech. 2: Path dependencies (25 models)

		· · · · · · · · · · · · · · · · · · ·	
2	2.1	High transaction costs due to secure property rights with fixed allocations	13-GS241a
		Stalled social learning due to rules based on historical hydrology	15-GS234b
2	2.2	and limited understanding of climatic stimulus	I5-GS234b A13
		and limited understanding of climatic stimulus and of SES	I5-GS234b A13-A12
2	2.3	Stalled social learning due to slow procedures for institutional change	15-GS91
2	2.4	Insufficient reason due to path dependency in agency	I1-A16
		High transaction costs due to	I3-A16

Mech. 5: Competing priorities (20 models)

5.1	Insufficient reason due to incompatible institutional incentives	I1-GS23				
5.2	Insufficient reason due to concurrent stimuli					
5.3	Insufficient reason due to limited awareness of climate change	I1-A111				
5.4	Insufficient reason due to perception of climate change as a future problem	I1-A15				
5.5	Insufficient reason due to heterogenous interests about priority of adaptation	I1-A23				

Mech. 3: Zero-sum games (24 models)

3.1	High transaction costs due to heterogenous interests about water services	13-A22
J	Insufficient reason due to	I1-A22
	and high costs of adaptation	I1-A22- AO4
	High transaction costs due to externalities of the adaptation option	I3-A01
3.2	and top-down-decision-making	I3-A01- GS44
J.2	and uncertain consequences of adaptation option	I3-AO1- AO2
	and co-occurrence of heterogenous interests about water services	A22-A01

Mech. 6: Tangible constraints (19 models)

	Constrained capacity due to financial constraints	I2-A31
6.1	in the presence of existing adaptation deficits	I2-A31- RS6
0.1	and poor coordination of data	I2-A31- GS421
	and due to high transaction costs	I2-I3-A31
	and limited understanding of SES	A31-A12
6.2	Constrained capacity due to limited information	I2-A41
6.3	Constrained capacity due to staff constraints	I2-A51

Zooming into archetypes... [2.1]: secure water rights with fixed allocation

- Appears in 4% of models, 12% of papers
- Water rights guarantee extraction level for upstream users
- Climate change: Downstream users receive less during droughts
 - ➤ Downstream users need to challenge rights
 - >Limited adaptation options downstream, little incentives upstream
- Difficult to change under the rule of law

Zooming into archetypes... [2.2]: hydrological standards

- Appears in 4% of models, 15% of papers
- River basin management frequently based on institutionalized runoff statistics of historic hydrology
- Climate change: statistics become systematically outdated
 - >Adjustments of statistics taking projections into account?
 - ➤ Management procedures adequate for non-stationary statistics?
- Frequently co-occurring with [4.1], [4.2], relating to uncertainty
- Hydrological standards as institutions to legitimize decisions under uncertainty; institutional change not easy

Conclusions

- Case heterogeneity indeed overwhelming (in substance)
- Some archetypes reappear

 (although frequency is a limited metric here)
 - e.g. stationary hydrological standards
 - e.g. rigid water use rights
 - e.g. externalities created by adaptation options
- Typical limitations of a meta-study
- Use identified archetypes to guide
 - Selecting and conducting in-depth case studies
 - Designing focused comparative case studies
 - Designing large-N analyses to establish relevance and causality

Thank you for your attention!

klaus.eisenack@hu-berlin.de

www.resource-economics.hu-berlin.de

Archetypes...

Archetypes

Approach: identifying archetypical patterns

Detailed Local and Regional Case Studies

- > Decomposes barriers into sets of re-appearing patterns
- > Patterns need not appear in the complete universe of cases
- > There might be a whole suite of archetypes
- > In some cases, multiple pattern can appear

Motivation

- Some typical characteristics of case-based research
 - Small to medium number of cases
 - Large heterogeneity of cases' properties
 - No panacea for sustainable governance available
- Challenges
 - Not getting lost between trivial overgeneralization and ideographic trap
 - How can we move from descriptive to explanatory analysis?
 - How can we produce transferable knowledge for practice?

Overarching Issues

- 1. Aim for an intermediate degree of generality
- 2. Aim for an intermediate level of abstraction
- 3. Accept building blocks that only partially explain relations

Simple example: tools in a workshop

- 1. It contains multiple tools (as there is no tool that solves all problems)
- 2. Tools can be arranged in meaningful boxes or packages (simplifies order as they are needed for similar tasks)
- 3. Frequently, tools from multiple packages need to be used in combination

Archetype Analysis: setup

- Consider cases and their attributes
 - "Diagnostic attributes" characterize biophysical, technical and socioeconomic conditions of cases
 - "Design attributes" characterize institutional and technical arrangements that may be modified or created

"Outcome attributes" characterize present or expected future effects

(possibly normative)

	Attributes (artifical example)											
case	diagno	stic			design			outcome				
	a	b	С		d	е		f	g			
1	✓				✓							
2		\checkmark				\checkmark						
3	✓	\checkmark			✓	\checkmark		✓				
4	✓		\checkmark						\checkmark			
•••												

Archetype Analysis: definitions

An archetype is an implication with one of these forms

- **1. Positive:** For all cases of a specific subset [A]: if the diagnostic attributes [abc] and the design attributes [def] hold, then the outcome attributes [ghi] are expected
- **2. Normative:** For all cases of a specific subset [A]: if the diagnostic attributes [abc] hold and the outcomes [ghi] are intended, then the design attributes [def] are recommended
- **3. Abductive:** For all cases of a specific subset [A]: if the outcome attributes [ghi] are observed and the design attributes [def] hold, then the diagnostic attributes [abc] are inferred

Observe

- Archetypes need not hold for the complete universe of cases
- There might be a whole suite of archetypes
- Multiple archetypes can apply to a single case

Archetype Analysis: stylized example

	Attributes											
Day	diagnostic				design			outcome				
	rainy	cold	windy		umbrella	pullover	•••	comfortable				
1	✓				✓			✓				
2		\checkmark				✓		✓				
3	✓	\checkmark			✓	✓		✓				
4	✓		✓									
•••												

- Some (positive) archetypes in the example:
 - "If its raining and people use an umbrella, then they feel comfortable"
 - "If its cold, and people wear a pullover, then they feel comfortable"
- "rainy & umbrella" applies to 1, 3, but not to 4
- Both "rainy & umbrella" and "cold & pullover" apply to 3

Archetype Analysis: abstraction of cases

 Abstraction of cases: simple design recommendations may become invalid

		Attributes											
Day	/	diagnostic			design								
		rainy	cold	windy		umbrella	pullover						
e o	1	✓				✓							
Plan for a	2		✓				✓						
Pla	3	✓	✓			✓	✓						
	4	✓		✓									

Archetype Analysis: abstraction of attributes

Abstraction of attributes: may become less meaningful

	Attributes											
Day	diagnostic			design								
	rainy	cold	windy		umbrella	pullover						
1	✓				✓							
2		\checkmark				✓						
3	✓	\checkmark			✓	✓						
4	✓		✓									
•••					"take p	ackage"						

Coding

Starting point for coding

- > SES framework to characterize models
- "Models" are "statements that credibly claim scientifically and empirically justified results about the occurrence of a barrier"
- ➤ Variables that describe the model can be refined to higher tiers to capture relevant detail

Social, Economic, and Political Settings (S) S1- Economic development. S2- Demographic trends. S3- Political stability. S4- Government settlement policies. S5- Market incentives. S6- Media organization. Resource System (RS) Governance System (GS) RS1- Sector (e.g., water, forests, pasture, fish) GS1- Government organizations RS2- Clarity of system boundaries GS2- Non-government organizations GS3- Network structure RS3- Size of resource system RS4- Human-constructed facilities GS4- Property-rights systems RS5- Productivity of system GS5- Operational rules RS6- Equilibrium properties GS6- Collective-choice rules RS7- Predictability of system dynamics GS7- Constitutional rules RS8- Storage characteristics GS8- Monitoring & sanctioning processes RS9- Location Resource Units (RU) Users (U) RU1- Resource unit mobility U1- Number of users U2- Socioeconomic attributes of users RU2- Growth or replacement rate RU3- Interaction among resource units U3- History of use RU4- Economic value U4- Location RU5- Size U5- Leadership/entrepreneurship U6- Norms/social capital RU6- Distinctive markings RU7 - Spatial & temporal distribution U7- Knowledge of SES/mental models U8- Dependence on resource U9- Technology used Interactions (I) \rightarrow Outcomes (O) I1- Harvesting levels of diverse users O1- Social performance measures I2- Information sharing among users (e.g., efficiency, equity, accountability) O2- Ecological performance measures I3- Deliberation processes I4- Conflicts among users (e.g., overharvested, resilience, diversity) I5- Investment activities O3- Externalities to other SESs I6- Lobbying activities

Related Ecosystems (ECO)
ECO1- Climate patterns. ECO2- Pollution patterns. ECO3- Flows into and out of focal SES.

(Ostrom 2007)

Final coding system (second tier and some more detail)

RS1- size and scale
RS1.2 (upstream-downstream effects)

RS2- stimuli and exposure

RS3- current state of resource system

RS4- built infrastructure

RS5- concurrent stimuli

RS6- adaptation deficit

Adaptation Option

AO1- leads to externalities

AO2- with uncertain consequences

AO3- long lead times

AO4- high costs

AO5- reliance on technical measures

Governance System

GS1- participation

GS2- rights and responsibilities

GS2.1 fragmented responsibilities

GS2.3.4b rules based on historic hydrology

GS2.3 institutional incentives / other

GS2.4.1a secure property rights

GS3- institutionalized control

GS3.1 limited control in polycentric system

GS4- social connectivity

GS4.1 limited vertical coordination

GS4.2 limited horizontal coordination

GS4.21 poor coordination of data

GS5- conflict resolution mechanisms

GS6- social learning

GS7- accountability

GS8- scale of institutions

GS9- adaptiveness of institutions

GS10- formality of institutions

Actors

A1- individual knowledge, beliefs, preferences

A1.11 low awareness

A1.2 limited understanding auf SES

A1.3 limited understanding of climate stimulus

A1.5 low priority compared to other issues

A2- heterogeneous interests

A2.2 about water services

A2.3 about priority of adaptation

A2.5 limited trust

A3- access to material resources

A3.1 financial constraint

A4- access to information

A4.1 limited information

A5- staff resources

A5.1 limited staff capacity

Interactions

I1- insufficient reason

14- control

12- constrained capacity

15- stalled social learning

13- high transaction costs

FCA

Formal concept analysis (FCA)

• Qualitative knowledge representation and inference algorithms, developed in mathematics (Ganther & Wille, 1999)

Input: Table of 'objects' and their attributes -

Here: objects=models; attributes=SES vars

Computer-generated output

• Output 1: 'concept lattice' (puts more general and more specific patterns into relation)

• Output 2: implications, e.g. IF female AND child THEN girl

 One difference to QCA: algorithm only builds on valid attributes (not negated attributes), so less problems with missing data / case heterogeneity

